Multl format streams

Sakari Aillus
<sakari.allus@linux.intel.com>
2013-10-22



Use cases

Camera sensors that transmit multiple streams simultaneously

It's important to be able to separate these as they are independent of
each other

- Written to memory for software processing
- Processing in other hardware entities
Raw bayer

- Metadata

— Statistics

SoC cameras

- Statistics
- YUV and JPEG
- Interleaved YUV and JPEG for reduced memory requirements



Raw bayer

 Metadata Is typically a few lines in the
beginning of the frame

- Sometimes uses a different data type so that the
receiver can easily separate it from the image,
depending on the bus

* |SPs must not process the metadata
- Scaling or noise filtering, huh?



Raw bayer example (CSI-2)

start of frame

\ line 0: image data
~line 1: image data CSI-2 data type
image data, \
\ line n - 1: image data 2. L0 B \
N \
N

« Depending on the bus, start of frame and end of
frame events may be generated based on area start

or end
 The above frame would thus have three start of

frame and end of frame events

end of frame



Raw bayer, continued

 The sensors could use a separate virtual
channel to separate different areas of the
frame (metadata, image data etc.)

- Are there any?
— This could make sense In the future

* Not all recelvers support separation by data
type



Raw bayer, continued

S N B
bus
X

X




What do we need, then?

* Interface to tell the what's being transmitted on
the bus

e V4L2 sub-device API changes in media bus
format access

* V4L2 API changes to provide access to multiple
streams

- Multiple video nodes are not an option: video nodes
would need to be created and destroyed based on
the sensor configuration



Frame format descriptors

* Describe what an image source transmits
- More details than struct v4l2_mbus_framefmt has
» Set by the image source driver

 Read-only

- Relatively complex data structure

- Changes should be made through a different
Interface



Frame format descriptors, continued

struct v412 mbus frame desc {
struct v412 mbus frame desc entry \
entry[V4L2 MBUS FRAME DESC_ENTRY MAX];
unsigned short num entries;

b
#define V4L2 MBUS FRAME DESC_ENTRY FLAG BLOB (1 << 0)
#define V4L2 MBUS FRAME DESC ENTRY FLAG LEN IS MAX (1 << 1)
enum {
V4L2 MBUS FRAME DESC TYPE CSI2,
V4L2 MBUS FRAME DESC TYPE CCP2,
V4L2 MBUS FRAME DESC TYPE PARALLEL,
b
struct v412 mbus frame desc entry { .
us bpp; « Anew pad op is
ule flags;
u32 pixelcode; need_e_d fOf
unton £ et ¢ obtaining the frame
ul6 width; descriptor
ulé height; . Th . .
ule start line; € main image
Iy
u32 length; /* if BLOB flag is set */ r_nUSt always come
bi . first for backward
unsigned int type; a egs
union { compatibility on the
struct v412 mbus frame desc entry csi2 csi2;
struct v412 mbus frame desc entry ccp2 ccp2; user Space
struct v412 mbus frame desc entry parallel par; interface
b
I
struct v412 mbus frame desc entry csi2 {
u8 channel;

};



V4L 2 sub-device: media bus
formats

* The current VA4L2 sub-device interface for
media bus format assumes a single format per
pad
- But we'd need many

- Number of independent parts of the image could
depend on image source configuration

- Links model physical connections
« Adding more links is thus not an option



V4L 2 sub-device: media bus
formats, continued

 Anew field, format_index, could be added to
the relevant IOCTL argument structs such as

struct v4
struct v4
struct v4
struct v4

2 Su
2 Su
2 Su

2 Su

0C
0C
0C

0C

ev_format,
ev_mbus code enum,
ev_frame_size enum and
ev_selection

* This provides a way to access the additional
formats



V4L.2: access to multiple streams

 Formats are bound to video buffer queues

* |f one wants to capture multiple, independent
streams handled by the same DMA engine, an
iIndependent v412_format is required

 Two approaches

- Extend multi-plane buffers to multi-format buffers
- Multiplex buffer queues by index in addition to type



VA4L2: from multi-plane buffers to
multi-format buffers

« Extend multi-plane buffers to multi-format
buffers

 Make format information specific to plane
iInstead of the entire set of planes

* Clean and pretty, isn't it?



But...

14 bytes of reserved fields per plane

- Hardly enough for all that's currently in struct v412_pix_format
Forces capturing of all streams, all the time

- The image source might not even transmit them

Same gueue length for every stream

- Video recording might need, say, four, but still capture during the recording
could survive with just two

Buffers from different stream will finish at different periods of time
- Especially the metadata is important for the 3A control loop



VA4L2: multiple video buffer queues
per video node

* Previously multiple buffer queues were
nossible but they always involved a different
ouffer type

* Add another field that allows multiplexing the
same video node

* As the streams are independent, this avoids
the issues that using multi-planar buffers had



VA4L2: multiple video buffer queues
per video node

* Previously multiple buffer queues were
nossible but they always involved a different
ouffer type

* Add another field that allows multiplexing the
same video node

* As the streams are independent, this avoids
the issues that using multi-planar buffers had



VA4L2: multiple video buffer queues
per video node, continued

 Most IOCTL argument structs have free reserved fields

- struct v4l2_format has none, but we could steal up to 8 bytes
from the union --- the largest struct consumes 192 bytes of 200

* We could also split the type field

- 16 bits for buffer types and streams ought to be enough for
everybody

- Requires recognising the programs that can use the feature
« Well that's easy: they enumerate the streams, but this is still hackish

* The first stream must be the main image one for backward
compatibility



V4L2: metadata buffer type

* A new buffer type for metadata is much neater
and cleaner, but only provides a partial
solution

- Several buffer queues of the same type may not
exist on a single video node

- V4L2 BUF_TYPE _VIDEO CAPTUREZ2
* Argh!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

