

Multi format streams

Sakari Ailus
<sakari.ailus@linux.intel.com>

2013-10-22

Use cases

● Camera sensors that transmit multiple streams simultaneously
● It's important to be able to separate these as they are independent of

each other
– Written to memory for software processing
– Processing in other hardware entities

● Raw bayer
– Metadata
– Statistics

● SoC cameras
– Statistics
– YUV and JPEG

– Interleaved YUV and JPEG for reduced memory requirements

Raw bayer

● Metadata is typically a few lines in the
beginning of the frame
– Sometimes uses a different data type so that the

receiver can easily separate it from the image,
depending on the bus

● ISPs must not process the metadata
– Scaling or noise filtering, huh?

Raw bayer example (CSI-2)

line 0: metadata
line 1: metadata

line 0: image data
line 1: image data
...
line n - 1: image data

line 0: metadata

CSI-2 data type
embedded data

CSI-2 data type
image data,
e.g. 10 bpp

start of frame

end of frame
● Depending on the bus, start of frame and end of

frame events may be generated based on area start
or end
● The above frame would thus have three start of

frame and end of frame events

embedded data

Raw bayer, continued

● The sensors could use a separate virtual
channel to separate different areas of the
frame (metadata, image data etc.)
– Are there any?

– This could make sense in the future

● Not all receivers support separation by data
type

Raw bayer, continued

sensor
CSI-2

receiver
CSI-2
bus ISP

line 0: metadata
line 1: metadata

line 0: image data
line 1: image data
...
line n - 1: image data

line 0: metadata

line 0: image data
line 1: image data
...
line n - 1: image data

line 0: metadata
line 1: metadata

line 0: image data
line 1: image data
...
line n - 1: image data

line 0: metadata

line 0: image data
line 1: image data
...
line n - 1: image data

line 0: image data
line 1: image data
...
line n - 1: image data

line 0: metadata
line 1: metadata

line 0: image data
line 1: image data
...
line n - 1: image data

line 0: metadata

What do we need, then?

● Interface to tell the what's being transmitted on
the bus

● V4L2 sub-device API changes in media bus
format access

● V4L2 API changes to provide access to multiple
streams
– Multiple video nodes are not an option: video nodes

would need to be created and destroyed based on
the sensor configuration

Frame format descriptors

● Describe what an image source transmits
– More details than struct v4l2_mbus_framefmt has

● Set by the image source driver
● Read-only

– Relatively complex data structure

– Changes should be made through a different
interface

Frame format descriptors, continued
struct v4l2_mbus_frame_desc {
 struct v4l2_mbus_frame_desc_entry \
 entry[V4L2_MBUS_FRAME_DESC_ENTRY_MAX];
 unsigned short num_entries;
};

#define V4L2_MBUS_FRAME_DESC_ENTRY_FLAG_BLOB (1 << 0)
#define V4L2_MBUS_FRAME_DESC_ENTRY_FLAG_LEN_IS_MAX (1 << 1)

enum {
 V4L2_MBUS_FRAME_DESC_TYPE_CSI2,
 V4L2_MBUS_FRAME_DESC_TYPE_CCP2,
 V4L2_MBUS_FRAME_DESC_TYPE_PARALLEL,
};

struct v4l2_mbus_frame_desc_entry {
 u8 bpp;
 u16 flags;
 u32 pixelcode;
 union {
 struct {
 u16 width;
 u16 height;
 u16 start_line;
 };
 u32 length; /* if BLOB flag is set */
 };
 unsigned int type;
 union {
 struct v4l2_mbus_frame_desc_entry_csi2 csi2;
 struct v4l2_mbus_frame_desc_entry_ccp2 ccp2;
 struct v4l2_mbus_frame_desc_entry_parallel par;
 };
};

struct v4l2_mbus_frame_desc_entry_csi2 {
 u8 channel;
};

● A new pad op is
needed for
obtaining the frame
descriptor

● The main image
must always come
first for backward
compatibility on the
user space
interface

V4L2 sub-device: media bus
formats

● The current V4L2 sub-device interface for
media bus format assumes a single format per
pad
– But we'd need many

– Number of independent parts of the image could
depend on image source configuration

– Links model physical connections
● Adding more links is thus not an option

V4L2 sub-device: media bus
formats, continued

● A new field, format_index, could be added to
the relevant IOCTL argument structs such as
– struct v4l2_subdev_format,

– struct v4l2_subdev_mbus_code_enum,

– struct v4l2_subdev_frame_size_enum and

– struct v4l2_subdev_selection

● This provides a way to access the additional
formats

V4L2: access to multiple streams

● Formats are bound to video buffer queues
● If one wants to capture multiple, independent

streams handled by the same DMA engine, an
independent v4l2_format is required

● Two approaches
– Extend multi-plane buffers to multi-format buffers

– Multiplex buffer queues by index in addition to type

V4L2: from multi-plane buffers to
multi-format buffers

● Extend multi-plane buffers to multi-format
buffers

● Make format information specific to plane
instead of the entire set of planes

● Clean and pretty, isn't it?

But...

● 14 bytes of reserved fields per plane
– Hardly enough for all that's currently in struct v4l2_pix_format

● Forces capturing of all streams, all the time
– The image source might not even transmit them

● Same queue length for every stream
– Video recording might need, say, four, but still capture during the recording

could survive with just two

● Buffers from different stream will finish at different periods of time
– Especially the metadata is important for the 3A control loop

V4L2: multiple video buffer queues
per video node

● Previously multiple buffer queues were
possible but they always involved a different
buffer type

● Add another field that allows multiplexing the
same video node

● As the streams are independent, this avoids
the issues that using multi-planar buffers had

V4L2: multiple video buffer queues
per video node

● Previously multiple buffer queues were
possible but they always involved a different
buffer type

● Add another field that allows multiplexing the
same video node

● As the streams are independent, this avoids
the issues that using multi-planar buffers had

V4L2: multiple video buffer queues
per video node, continued

● Most IOCTL argument structs have free reserved fields
– struct v4l2_format has none, but we could steal up to 8 bytes

from the union --- the largest struct consumes 192 bytes of 200

● We could also split the type field
– 16 bits for buffer types and streams ought to be enough for

everybody

– Requires recognising the programs that can use the feature
● Well that's easy: they enumerate the streams, but this is still hackish

● The first stream must be the main image one for backward
compatibility

V4L2: metadata buffer type

● A new buffer type for metadata is much neater
and cleaner, but only provides a partial
solution
– Several buffer queues of the same type may not

exist on a single video node

– V4L2_BUF_TYPE_VIDEO_CAPTURE2
● Argh!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

